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Abstract—In this paper we tackle distributed detection of a
localized phenomenon of interest (POI) whose signature is sparse
via a wireless sensor network. We assume that both the position and
the emitted power of the POI are unknown, other than the sparsity
degree associated to its signature. We consider two communication
scenarios in which sensors send either (i) their compressed obser-
vations or (ii) a 1-bit quantization of them to the fusion center
(FC). In the latter case, we consider non-ideal reporting chan-
nels between the sensors and the FC. We derive generalized (i.e.
based on Davies’ framework (Davies, 1977)) locally most powerful
detectors for the considered problem with the aim of obtaining
computationally-efficient fusion rules. Moreover, we obtain their
asymptotic performance and, based on such result, we design
the local quantization thresholds at the sensors by solving a 1-D
optimization problem. Simulation results confirm the effectiveness
of the proposed design and highlight only negligible performance
loss with respect to counterparts based on the (more-complex)
generalized likelihood ratio.

Index Terms—Asymptotic analysis, generalized LMP test,
imperfect channel, sparse signal, wireless sensor network.

I. INTRODUCTION

D ISTRIBUTED detection (DD) is one of the most impor-
tant tasks in wireless sensor networks (WSNs) and has

attracted much interest in the last decades [2]–[4]. In general,
a WSN consists of several low-cost sensors usually subject to
severe energy & bandwidth constraints. All sensors send their
observations to a fusion center (FC) where the information is
combined and a (potentially more accurate) final decision is
made regarding the absence (presence) of a phenomenon of
interest (POI). Because of energy & bandwidth caps of the WSN,
each sensor quantizes its observations into one or more bits about
the occurrence of a POI before reporting to the FC [5]–[8].
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The problem of sparse signal reconstruction has received
much attention in recent years with the development of com-
pressive sensing (CS) [9], [10]. Indeed, under the CS framework,
sparse signals can be accurately recovered from a small number
of available measurements. However, other than the complete
recovery, an interesting subject in this area is performing infer-
ence tasks from (compressively-sensed) sparse signals without
the need for explicit reconstruction [11]. Since CS theory implies
much lower measurements compared to Nyquist theory, “sparse
inference” based on compressed measurements is also desirable
in high-dimensional settings due to storage, communication,
and computation efficiency. Accordingly, several works have
appeared in recent years, each focusing on a specific task
(e.g. [12], [13] and [14], for detection, estimation and classi-
fication, respectively).

In this context, the detection problem has been the most
investigated, starting from the seminal works [12], [15], pro-
viding error bounds for the likelihood ratio (with either partial-
or full-knowledge of the sparse signal to be detected). In the
former case [12] a universal compressive matrix design was
investigated, whereas in the latter case [15] subspace-knowledge
of the sparse signal was leveraged to design an improved mea-
surement matrix. Leveraging analogous sparsity knowledge at
the detection stage, an enhanced locally most powerful (LMP)
test was designed in [16] based on Padé approximation. Dif-
ferently, detection of randomly-unknown sparse signals lying
in lower-dimensional subspace was attempted in [17]. Based
on alternative assumptions, the Bernoulli-Gaussian (BG) dis-
tribution was used to model (random) sparsity in [18] and a
generalized likelihood ratio (GLR) test was proposed to deal
with the unknown sparsity degree (via the Central Limit The-
orem). Remarkably, the adaptive sensing [19] and sequential
detection [20] setups were also tackled within the CS realm.

In recent years, more studies have been devoted to the use
of (collaborative) CS techniques in networked data [33], [34],
with many relevant works focusing on DD of a sparse signal
via WSNs. In these works, the FC makes a global decision about
the presence or absence of a sparse signal based on compressed
measurements sent from different sensors [22], [24]–[26], [28]–
[31], [35]. The DD problem of sparse signals (having a common
sparsity support) in Gaussian noise from a sensor network is
considered in [26] and a LMP test is proposed. In [24], the
sparsity is modeled in a deterministic fashion (subspace assump-
tion) and a GLR fusion rule is obtained based on the estimated
sparsity support. Remarkably, fusion techniques for detecting
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TABLE I
CATEGORIZATION OF CLOSELY-RELATED WORKS ON DISTRIBUTED DETECTION VIA WSNS. THE PAPERS ARE REPORTED IN CHRONOLOGICAL ORDER. ACRONYMS

MEANING IS REPORTED AT THE BOTTOM OF THE TABLE

Legend:
ST (Signal Type): ◦ (ordinary signals); • (sparse signals).
SP–MOD (Sparsity Model): D (deterministic); G (Gaussian), BG (Bernoulli-Gaussian).
RC (Reporting Channels): ◦ (ideal); • (noisy).
Q (Quantization): ◦ (no quantization); (raw quantization); (likelihood-ratio quantization) • (both quantization types).
L-POI (Localized POI): ◦ (no); • (yes).

sparse signals via WSNs have been also designed by including
physical-layer security guarantees in [25], [31]. Because of
bandwidth scarcity in the network, compressed observations at
the sensors should be quantized into one or multiple bits before
sending to the FC. Accordingly, in [22] sparse signal detection
in WSNs from one-bit CS-based measurements is performed,
and a sign-GLR and a double-stage detector (leveraging binary
iterative hard thresholding) are proposed to capitalize signal
sparsity. In [28] the authors have investigated the LMP rule
for detection of sparse signals with quantized observations in
WSN, and the extension of the above design to the generalized
Gaussian noise setup has been reported in [29]. More recently,
the same DD problem has been also investigated for sensors
quantizing their local likelihood ratios (in cases they can be
computed) into 1-bit and reporting them to the FC for global
decision [30]. All the above works on sparse signal DD consider
an ideal channel between the FC and the sensors. However, due
to their battery-powered nature, sensors need to enforce also
low-energy communications. Hence, it is of practical impor-
tance considering imperfect channels between the sensors and
the FC [23], [36], [37]. More important, though these works
capitalize WSN diversity for “sparse” DD, the aforementioned
literature does not take into account that POIs localized in
a compact space region (e.g. oil leakage, biological release)
lead to uneven (distance-dependent) signal strength among the
sensors.

On the contrary, DD of a localized POI based on WSN-
originated quantized measurements has been considered in [21],
[23], where detectors based on either the GLR or the generalized
LMP (and hybrid combinations of both) have been proposed.
Aiming at further performance gains, (optimized) quantizer

design for generalized LMP has been proposed in [27]. Recent
studies dealing with this task also include multiplicative fading
into the received signal, see e.g. [32]. Nonetheless, none of the
aforementioned works have addressed DD of localized POIs
whose signature at each sensor node is modeled as sparse
signals and CS plus quantization techniques are used at each
node.

Accordingly, in Table I we summarize the closely-related
works on (i) DD of sparse signal(s) (column ST) and (ii) DD of
a localized POI (column L-POI), so as to highlight the novelty
of our work. When referring to DD works assuming a sparse
signal, we also detail the peculiar sparsity model considered
(column SP-MOD). The taxonomy also includes whether quan-
tization (column Q) and non-ideal channels (column RC) were
considered in the reporting phase of the sensor nodes. In the
former case, the type(s) of quantization investigated is (are) also
highlighted.

Accordingly, the main contributions of this work are summa-
rized as follows:
� We address the DD of a POI measured as sparse signals

by different sensors. The (average) path loss of each sig-
nal is modeled by a deterministic and unknown function
depending on the sensor-event distance, called amplitude
attenuation function (AAF) [23]. We use the Bernoulli-
Gaussian distribution to model the sparse signal so that its
average power depends on the AAF. Herein, we assume
that the signal power (σ2

s ), the sparsity degree (ε) and the
POI position (yP ) are all unknown.

� We consider two communication scenarios. In the first case,
each sensor sends its full-precision (compressed) obser-
vation to the FC through an ideal channel. This scenario
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is taken as a desirable upper bound. Conversely, in the
second scenario, each sensor quantizes either (a) the (raw)
observation or (b) the corresponding likelihood ratio (LR)
into a single bit. In the quantized case, to face realistic
energy-budgets in WSNs, it is assumed the sensors send
their bits to the FC via an imperfect reporting channel,
modeled as a binary symmetric channel (BSC). Relevant
BSC scenarios are time-based parallel-access channels
(e.g. NB-IoT) where each sensor decision is decoded in-
dependently [32], [38] or multiple-access channels with a
large-array at the FC where decoding is operated via a linear
filter (to decouple sensors’ contributions) and a sign-based
logic [39].

� Given the considered DD model, we investigate three
hypothesis tests: S1–the sparsity parameter is tested (σ2

s

and yP are considered as nuisances); S2–the POI power
is tested (ε and yP are considered as nuisances); S3–the
product of the sparsity parameter and the POI power is
tested (yP is considered as a nuisance).

� Since there are nuisance parameters present only under
the alternative hypothesis, the (standard) LMP rule is not
applicable here. Therefore, we use a generalized version
of the LMP rule resorting to Davies technique [1], shortly
denoted as DLMP rule in this work. The aim is the design
of an efficient fusion rule as opposed to the usual (but
more cumbersome) GLR-based rules. This applies to (I)
each test and (II) both communication scenarios (analog
vs. quantized) considered.

� By exploiting a remarkable property of the LMP rule when
considering its (position-clairvoyant) asymptotic perfor-
mance, we are able to design the quantization thresholds
for each sensor according to this rationale, for both raw-
quantization (RQ) and LR-quantization (LQ) cases.

� Numerical results are provided to investigate the perfor-
mance of DLMP rules in comparison to GLR-based coun-
terparts (derived for the same problem) for a relevant range
of WSN system & sensing parameters.

For convenience, we provide the list of acronyms employed
throughout this paper in Table II . The rest of the paper is
organized as follows. Section II provides an overview of the
system model and the problem statement. In Section III, a fusion
rule based on the DLMP test is derived when the sensors send
their full-precision observation to the FC. In Section IV, we
obtain rules using DLMP test based on the 1-bit quantized data.
In Section IV-D, by using the asymptotic analysis of the statistics
of the detectors, we obtain the quantization threshold for each
sensor. In Section V, simulation results are presented to evaluate
the performance of the proposed detectors. Conclusions are
drawn in Section VI, along with potential future directions.1

1Notations: Lower-case (resp. upper-case) bold letters denote vectors (resp.
matrices), with ak (resp. an,m) representing the kth element (resp. (n,m)th
element) of a (resp. A); upper-case calligraphic letters, e.g. A, denote finite
sets; R denotes set of real numbers; (·)T , E{·} and ‖ · ‖ denote transpose,
expectation and vector Euclidean norm operators, respectively; u(·) and δ(·)
denote Heaviside (unit) step and Dirac delta functions, respectively; the symbols

∼ and
a∼ mean “distributed as” and “asymptotically distributed as”; p(·) (resp.

P (·)) represents probability density (resp. mass) functions; x ∼ N (m,σ2)

TABLE II
LIST OF ACRONYMS USED THROUGHOUT THE MANUSCRIPT.

II. PROBLEM STATEMENT

In this work, we consider the DD problem of a localized
POI generating sparse signals lying in a K-dimensional space
(e.g. time- or frequency-domain). We assume that the signal is
generated by a POI within a monitored region of interest (ROI),
denoted with A. The WSN consists of M spatially-distributed
sensors indexed by {m = 1, . . . ,M} with parallel topology in
which each sensor sends its data to an FC for global decision. The
overall model is summarized in Fig. 1. In the following of this
section, we detail the DD problem and the related background.

A. System Model

The detection task based on the compressed measurement for
the mth sensor can be represented by a binary hypothesis test as
follows: {

H0 : xm = nm,

H1 : xm = hT
m sm d (yP ,ym) + nm,

(1)

where H0 and H1 are the hypotheses corresponding to the ab-
sence and the presence of the POI, respectively. Herein, xm ∈ R
is the compressed measurement, hm ∈ RK×1 represents the
known measurement vector independent of the signals [26], [28]
and nm ∼ N (0, σ2

n,m) denotes the zero-mean Gaussian noise
with known variance. The noise terms nm are assumed statisti-
cally independent over space (viz. sensors). Also, sm ∈ RK×1

represents the sparse signal measured at mth sensor containing
a few dominant elements, as detailed in later Section II-B.

indicates a Gaussian random variable with mean m and variance σ2; pN (·)
and Q(·) denote the pdf and the tail probability of a zero-mean unit-variance

Gaussian random variable, i.e. Q(x) =
∫ ∞
x

1√
2π

exp(− t2

2 )dt.
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Fig. 1. The system model used in this paper. Each compressed observation
(resp. each bit arising from compression and quantization) is sent through an
ideal channel (resp. a BSC) and received by the FC.

Moreover, ym ∈ Rd denotes the known mth sensor position,
whereas yP ∈ Rd represents the unknown POI position. The
term d(yP ,ym) denotes the AAF, which models the (average)
signal strength decay at the generic sensor. Indeed, the AAF
depends on the sensor-POI distance ‖yP − ym‖ and reflects
the fact that high-SNR (resp. low-SNR) observations usually
correspond to sensors closer to (resp. farther from) the POI.

In this paper, we utilize two relevant attenuation models,
namely the power-law (PL) model

d (yP ,ym) � 1√
1 + (‖yP − ym‖ / β)α , (2)

and the exponential-law (EL) model

d (yP ,ym) �
√

exp (−‖yP − ym‖2 / β2), (3)

as deterministic AAFs [23], [27], [32]. The terms α and β in
(2) and (3) are the decay exponent and POI (approximate) extent,
respectively.

B. Signal Model

Herein, we assume that the sparse signals measured by dif-
ferent sensors {sm, m = 1, 2, . . . ,M} share the same K × 1
binary-valued sparsity pattern v [28], [29], namely{

vk = 1, if {sm,k �= 0,m = 1, 2, . . . ,M}
vk = 0, if {sm,k = 0,m = 1, 2, . . . ,M}, (4)

for k = 1, . . . ,K. In other words, the non-zero entries in the
sparse signals sm’s have the same locations, while they may
have different values for different sensors.

Although different modeling choices can be pursued for the
sparse signals (see e.g. Table I), herein we resort to a (probabilis-
tic) BG model. The latter has been extensively used in several
studies to model sparse signals (including DD setups) [18],
[26], [28], [40]–[42] and shown to fit several practical scenarios,
including gene factor analysis [43], electromagnetic imaging of
metallic reflectors [44], and spectral analysis of astrophysical
data [45].

To model the sparse signal using BG distribution in this paper,
we assume that the entries in v are independent and identically
distributed (i.i.d.) random variables according to a Bernoulli
probability mass function (pmf), i.e. vk = 1 (resp. vk = 0) with
probability ε (resp. (1− ε)). The parameter 0 ≤ ε ≤ 1 models
the sparsity degree of the signals [18], [26]. Likewise, it is
assumed that all the nonzero elements of the sparse signals
{sm,m = 1, 2, . . . ,M} are i.i.d. random variables with Gaus-
sian distribution, i.e. N (0, σ2

s) [26]. In other words, Bernoulli
random variables with probability ε are associated to the position
of the non-zero values of the sparse signal, and the corresponding
values follow a zero-mean Gaussian distribution with variance
σ2
s [40].
Accordingly, the BG distribution for kth entry of mth sensor

can be written as [26], [46]

sm,k ∼ εN (0, σ2
s) + (1− ε) δ (sm,k) ∀m, ∀k (5)

i.e. as a mixture (weighted by ε) of a delta function (centered in
zero) and a Gaussian distribution. In this work, we do not make
any restrictive assumption regarding the knowledge of σ2

s and ε,
i.e. we assume that both parameters are unknown. From (1), the
probability density function (pdf) of observation of mth sensor
node can be obtained as follows:{

xm ∼ N (0, σ2
n,m), underH0

xm
a∼ N (

0, ε σ2
s ‖hm‖2 d2(yP ,ym) + σ2

n,m

)
, underH1

(6)
form = 1, . . . ,M . The asymptotic distribution of xm under H1

has been derived in [18] by assuming thatK is large and utilizing
the Lyapunov Central Limit Theorem. For compactness, we
collect all the sensors’ measurements inx � [x1, x2, . . . , xM ]T .
Also, we define themth equivalent variance as σ2

m(ε, σ2
s ,yP ) �

(ε σ2
s ‖hm‖2 d2(yP ,ym) + σ2

n,m), which will be used here-
inafter.

C. Hypothesis Testing Scenarios Considered

The DD problem in this work can be considered as a one-sided
hypothesis testing problem in three different scenarios S1-S3,
detailed as follows:

�S1: we test the unknown sparsity degree ε. Accordingly, the
sparsity degree equals zero under H0, whereas it is positive
under H1. Our analysis will focus on the case where ε → 0
under H1 which results in a low-sparsity POI detection.
Based on the signal model in this paper, the problem of detec-
tion of sparse signal leads to the following binary hypothesis
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test problem [28]:{
H0 : ε = 0

H1 : ε > 0,
{
σ2
s ,yP

}
(nuisances)

(7)

which is a one-sided and close hypothesis test problem.
�S2: we test the unknown POI power σ2

s . Accordingly, the POI
power equals zero under H0, whereas it is positive under H1.
Our analysis will focus on the case where σ2

s → 0 under H1,
which results in a low-power POI detection.
This assumption leads to the following one-sided and close
hypothesis test:{

H0 : σ2
s = 0

H1 : σ2
s > 0, {ε,yP } (nuisances)

(8)

�S3: we test the unknown product of the sparsity degree and the
POI power, i.e. κ � ε · σ2

s . Accordingly, the aforementioned
product equals zero under H0, whereas it is positive under
H1. Our analysis will focus on the case where κ → 0 under
H1, which results in a low-power/low-sparsity POI detection.
This assumption leads to the following one-sided hypothesis
test: {

H0 : κ = 0

H1 : κ > 0, yP (nuisance)
(9)

Next subsection will lie the basis for the design of suitable
fusion rules for the three scenarios considered. This is tanta-
mount to the design of a statistic Λ (which is function of x or a
compressed version in the quantized case) deciding in favor of
H1 (resp.H0) when its value is above (resp. below) the threshold
γfc.

Accordingly, we evaluate the performance of the fusion rules
in terms of the well-known detection (PD � Pr{Λ > γfc|H1},
i.e. the complement of type II error) and false-alarm probabilities
(PF � Pr{Λ > γfc|H0}, i.e. the type I error).

D. Generalized Locally Most Powerful Tests

The optimal detection performance is provided by the uni-
formly most powerful (UMP) test, which unfortunately does not
exist for (general) one-sided hypothesis tests with vector-valued
sufficient statistics [47]. In absence of the UMP test, the LMP test
(also known as locally-optimum detector) has been extensively
used in DD literature due to its simplicity and flexibility [48],
[49].

The LMP test is an asymptotic version of the UMP test for
one-sided and close hypothesis testing problems [50], namely
H0 : θ = θ0 against H1 : θ > θ0, where (θ − θ0) → 0. Indeed
the LMP test is obtained as the maximizer of the detection prob-
ability slope at θ0 under a fixed value of false-alarm probability
(i.e. as a generalization of the Neyman-Pearson lemma), see
e.g. [2], [47], [51]. Additionally, the LMP test does not require
an estimate of θ as opposed to the GLR test.

The LMP statistic can be obtained as the first-order Tay-
lor expansion of the log-likelihood around the point θ = θ0,

namely [50]:

ΛLMP �
(
∂ ln p ( · ; θ)

∂θ

) ∣∣∣∣∣
θ=θ0

× 1√I (θ0)
, (10)

where p(·; θ) denotes the generic likelihood of the data versus
θ and I(·) represents the Fisher information. The latter, when
evaluated at θ0, is defined as:

I (θ0) � E

{(
∂ ln p ( · ; θ)

∂θ

∣∣∣∣∣
θ=θ0

)2 }
(11)

However, because of the nuisance parameters in the (one-sided)
tests associated to scenarios S1-S3 (cf. (7), (8), and (9)), the
standard LMP test is not applicable. Additionally, the nuisance
parameters in S1-S3 are observable only under the alternative
hypothesis H1.

In other terms, we are faced to test the general one-sided
binary hypothesis test{

H0 : θ = θ0

H1 : θ > θ0, ρ (nuisance) ,
(12)

where ρ is a nuisance vector parameter present only under H1,
i.e. the pdf/pmf of the observations does not depend on ρ when
H0 holds. For this reason, generalized LMP tests [23] have been
proposed to solve the test of hypotheses specified in (12), based
on Davies technique [1], as described hereinafter.

Suppose that, for known ρ, S(ρ) is an appropriate decision
statistic such thatH1 is declared ifS(ρ) > b, where b is a suitable
threshold. For unknown ρ, Davies proposed a test statistic Ω
based on S(ρ), namely Ω � supρ∈P S(ρ), where P denotes the
nuisance parameter space.

Assuming that S(ρ) is chosen as the LMP statistic, Davies
LMP (DLMP) fusion rule is given by:

ΛDLMP � sup
ρ∈P

ΛLMP(ρ). (13)

The above statistic will be used in this work by considering
the relevant signal parameter θ as ε, σ2

s or κ, depending on
the scenario considered. Conversely, the relevant nuisance vec-
tor parameter will always include the POI position (namely
{σ2

s ,yP }, {ε,yP } and {yP } for S1, S2 and S3, respectively).

III. GENERALIZED LMP DETECTOR USING THE

RAW OBSERVATIONS

This section devises DLMP detectors for the three scenarios
described in Section II-C. These detectors are based on the raw
measurement vectorx, namelyΛ(x). The considered setup well
suits to sensors not subject to strict (bandwidth & energy) con-
straints. Accordingly, the performance of the detectors obtained
provides a practical upper-bound on achievable performance in
the quantized case. The section is concluded with a comparison
with the GLR for the same problem and the corresponding
implementation aspects.
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A. First Scenario (S1)

In this scenario, we test the sparsity degree ε associated to the
POI. The corresponding DLMP detector (shortly denoted with
DLMP-1) is written as:

ΛDLMP(1) � sup
(σ2

s ,yP )

(
∂ lnp(x; ε,σ2

s ,yP )
∂ε

) ∣∣∣∣∣
ε=0√I (ε = 0;σ2

s ,yP )
, (14)

where I(ε;σ2
s ,yP ) is the Fisher information assuming the pair

(σ2
s ,yP ) known. The latter is given by:

I (
ε;σ2

s ,yP

)
= E

{(
∂ ln p

(
x; ε, σ2

s ,yP

)
∂ε

)2 }
(15)

To derive the DLMP-1 statistic, the partial derivative of the log-
likelihood with respect to (w.r.t.) ε is obtained as

∂ ln p
(
x; ε, σ2

s ,yP

)
∂ε

=

σ2
s

2

M∑
m=1

[
x2
m‖hm‖2 d2 (yP ,ym)

σ4
m (ε, σ2

s ,yP )
− ‖hm‖2 d2 (yP ,ym)

σ2
m (ε, σ2

s ,yP )

]
,

(16)

and the Fisher information is expressed in explicit form as

I (
ε;σ2

s ,yP

)
=

σ4
s

2

M∑
m=1

‖hm‖4 d4 (yP ,ym)

σ4
m (ε, σ2

s ,yP )
(17)

Therefore, the DLMP-1 detector is obtained as follows:

ΛDLMP(1) = sup
yP

∑M
m=1 ‖hm‖2 d2 (yP ,ym)

(
x2
m − σ2

n,m

)√∑M
m=1 ‖hm‖4 d4 (yP ,ym)

(18)
It is apparent that the DLMP-1 detector does not depend on the
variance σ2

s . Accordingly, the maximization is only carried out
w.r.t. the POI position yP .

B. Second Scenario (S2)

In this scenario, we test the POI power σ2
s . Therefore, the

DLMP-2 detector is obtained as follows:

ΛDLMP(2) = sup
(ε,yP )

(
∂ lnp(x;ε,σ2

s ,yP )
∂σ2

s

) ∣∣∣∣∣
σ2
s=0√I (σ2

s = 0; ε,yP )
, (19)

where I(σ2
s ; ε,yP ) is the Fisher information assuming the pair

(ε,yP ) known. The latter is given by:

I (
σ2
s ; ε,yP

)
= E

{(
∂ ln p

(
x; ε, σ2

s ,yP

)
∂σ2

s

)2 }
(20)

To derive the DLMP-2 statistic, the partial derivative of the log-
likelihood w.r.t. σ2

s is obtained as:

∂ ln p
(
x; ε, σ2

s ,yP

)
∂σ2

s

=

ε

2

M∑
m=1

[
x2
m‖hm‖2 d2 (yP ,ym)

σ4
m (ε, σ2

s ,yP )
− ‖hm‖2 d2 (yP ,ym)

σ2
m (ε, σ2

s ,yP )

]
,

(21)

Conversely, the Fisher information can be obtained as follows:

I (
σ2
s ; ε,yP

)
=

ε2

2

M∑
m=1

‖hm‖4 d4 (yP ,ym)

σ4
m (ε, σ2

s ,yP )
(22)

By evaluating (19), it is easy to verify that the DLMP-2 statistic
coincides with the DMLP-1 obtained in (18). Indeed, since the
ratio in (19) is independent of ε, the optimization needs to be
only performed w.r.t. yP .

C. Third Scenario (S3)

In this scenario, we test the product of the POI power and the
sparsity degree κ = ε · σ2

s . In such a case, the DLMP-3 detector
is obtained as follows:

ΛDLMP(3) = sup
yP

(
∂ lnp(x;κ,yP )

∂κ

) ∣∣∣∣∣
κ=0√I (κ = 0;yP )

, (23)

where I(κ;yP ) is the Fisher information assuming yP known.
The latter is given by:

I (κ;yP ) = E

{(
∂ ln p (x;κ,yP )

∂κ

)2
}

(24)

To derive the DLMP-3 statistic, the partial derivative of the log-
likelihood w.r.t. κ is obtained as:

∂ ln p (x; κ,yP )

∂κ
=

1

2

M∑
m=1

[
x2
m‖hm‖2 d2 (yP ,ym)

σ4
m (ε, σ2

s ,yP )
− ‖hm‖2 d2 (yP ,ym)

σ2
m (ε, σ2

s ,yP )

]
,

(25)

Conversely, the Fisher information can be obtained as follows:

I (κ;yP ) =
1

2

M∑
m=1

‖hm‖4 d4 (yP ,ym)

σ4
m (κ,yP )

(26)

It is readily shown that applying the Davies method in this
scenario leads to a detector which statistically coincides with
DLMP1/2 detectors (see e.g. (18) for S1 scenario). The above
result highlights that the DLMP detector is expected to perform
well in the cases of (i) low-power (σ2

s → 0), (ii) low-sparsity
(ε → 0) and low-sparsity × power (κ → 0). Indeed, if yP were
known, the above detector would represent the LMP statistic in
all the three scenarios.

D. Comparison With GLR and Implementation Aspects

The obtained DLMP fusion rule reported in (18) can be
implemented by performing a grid search w.r.t. yP over the
(limited) ROI A ∈ Rd. In other words, considering that the
allowable values of the POI position yP lie in the limited set
A ⊂ Rd, the search space of yP is then divided into CP cells
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with center equal to yP [j], j ∈ {1, 2, . . . , CP }. Denoting with
ΛDLMP the DLMP-based statistic, we can approximate it (by
discretization) as follows:

ΛDLMP(x) ≈ max
j=1,2,...,CP

ΛLMP (x ,yP [j]) (27)

Accordingly, the complexity DLMP-based fusion rule is
O(M CP ). This implies a significant reduction with respect to
the corresponding GLR-based counterpart, which represents the
most common approach to deal with composite hypothesis tests.
Indeed, in the latter case [50], its implicit expression is given by

ΛGLR(x) � 2 ln

[
p(x; κ̂, ŷP )

p(x;κ = 0)

]
. (28)

In the above equation, the pair (κ̂, ŷP ) represents the maximum
likelihood (ML) estimates under H1, i.e.

(κ̂, ŷP ) � arg max
(κ,yP )

p(x;κ,yP ) . (29)

We observe that ΛGLR requires the solution to an optimization
task. Unfortunately, the ML estimate pair (κ̂, ŷP ) cannot be
obtained in closed form and this hinders its practical imple-
mentation. Hence, a (joint) grid approach is usually adopted on
(κ,yP ), leading to a complexity equal to O(M CP Cκ), where
Cκ denotes the number of grid points associated to κ.

IV. GENERALIZED LMP TEST USING QUANTIZED DATA AND

DESIGN OF THE QUANTIZER

Because of limited resources of energy and bandwidth in
WSNs, we assume herein that the compressed observation at
each sensor node xm is also quantized into one bit via a de-
terministic quantizer. This is a common assumption usually
employed in DD tasks, see e.g. [8], [46]. Then, each sensor
sends one bit (associated to the presence or absence of the
target) via an imperfect reporting channel, modeled as a BSC,
to the FC. Therein a suitable and efficient fusion rule should
employed to decide between H0 and H1 based on the (noisy)
received bits from sensors. Due to the finite resolution nature of
this setup, optimization of quantization thresholds at the sensors
represents a degree of freedom to be leveraged to improve the
fusion performance.

Accordingly, next subsections are devoted to (i) DD based
on quantized raw observations (Section IV-A), named as raw
quantization (RQ) and (ii) DD based on the quantized local LR
(Section IV-B), named as likelihood quantization (LQ). Therein,
similar to Section III (referring to the unlimited bandwidth/full-
precision case), we consider the three scenarios introduced in
Section II-C and we derive the DLMP fusion rule for each. The
section proceeds with a qualitative comparison of the proposed
rules with one-bit GLR counterparts (cf. Section IV-C). The
section ends with design of the local quantizer (based on a sound
rationale, cf. Section IV-D) in both the cases (i− ii).

A. Generalized LMP Test Using Quantized Raw Observation

Herein, we first assume that the compressed observation (xm)
at each sensor node is quantized into one bit via RQ, i.e. zrq

m �
u(xm − ηm), where ηm denotes the corresponding quantizer

threshold. Given these assumptions, the probability that zrq
m = 1

under H1 is given by

βrq
m(ε, σ2

s ,yP ) � Q
(
ηm/

√
σ2
m(ε, σ2

s ,yP )
)

(30)

whereas, when H0 holds, the above probability reduces to

βrq
0,m � Q(ηm/

√
σ2
n,m).

Further, we assume that the quantized measurement zrq
m is

transmitted over a non-ideal reporting channel, here modeled as
a BSC. As a result, the FC receives an error-prone rrq

m from mth
sensor node (m = 1, . . . ,M), which is given by:

rrq
m =

{
zrq
m, with probability 1− Pe,m

1− zrq
m, with probability Pe,m

(31)

where Pe,m represents the (known) bit error probability
(BEP) of the channel. The FC then forms the vector rrq �
[rrq

1 , r
rq
2 , . . . , r

rq
M ]T (i.e. based on the noisy received bits) and

takes a global decision based on it. Given the above assumptions,
the probability that rrq

m = 1 under H1 is

αrq
m(ε, σ2

s ,yP ) =

(1− Pe,m)βrq
m(ε, σ2

s ,yP ) + Pe,m(1− βrq
m(ε, σ2

s ,yP )) (32)

whereas, under H0, it holds αrq
0,m = (1− Pe,m)βrq

0,m +

Pe,m(1− βrq
0,m).

For the considered RQ model, attempting to devise a DLMP
for the cases S1-S3 introduced in Section II-C leads to the same
fusion rule, as shown by the following proposition.

Proposition 1: The one-bit DLMP fusion statistic based on
RQ is coincident under the three different scenarios considered
and equal to:

Λrq
1B−DLMP =

sup
yP

∑M
m=1(r

rq
m − αrq

0,m) Ξrq
m d2 (yP ,ym)√∑M

m=1 α
rq
0,m

[
1− αrq

0,m

] (
Ξrq
m

)2
d4 (yP ,ym)

, (33)

where the auxiliary definition

Ξrq
m � (1− 2Pe,m)

αrq
0,m

[
1− αrq

0,m

] ηm
σ3
n,m

pN

⎛⎝ ηm√
σ2
n,m

⎞⎠ ‖hm‖2 (34)

has been employed.
Proof: The proof is given in Appendix A. �
Remarks: first of all, the above result complements the coinci-

dence result obtained in the full-precision (infinite-bandwidth)
case of Section III. Hence, also when RQ is employed at the
sensors, the DLMP fusion statistic in (33) is expected to perform
well in the cases of low-power (σ2

s → 0), low-sparsity (ε → 0)
and low-sparsity× power (κ → 0). Finally, similarly to (18), the
implementation of DLMP statistic requires only a maximization
w.r.t. the POI position yP .

B. Generalized LMP Test Using Quantized LR

In this subsection, we use the 1-bit quantized local LRs to
design the DLMP rule at the FC. Specifically, at the mth sensor,
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the (local) LR can be written as follows:

Lm =
p
(
xm; ε, σ2

s ,yP

)
p (xm;H0)

=

√
σ2
n,m

σ2
m (ε, σ2

s ,yP )
exp

(
ε σ2

s ‖hm‖2
2σ2

n,m σ2
m (ε, σ2

s ,yP )
x2
m

)
,

(35)

It can be easily observed that the LR is a monotonically increas-
ing function of x2

m (or, equivalently |xm|). This result holds
independently on the unknown values (ε, σ2

s ,yP ). Therefore,
the local UMP detector at the mth sensor does exist and can be
written, by Karlin-Rubin theorem [47], as:

zlq
m =

{
1, if |xm| ≥ τm

0, if |xm| < τm
, m = 1, . . . ,M (36)

where τm is the quantization threshold to be determined. Given
these assumptions, the probability that zlq

m = 1 underH1 is given
by

βlq
m(ε, σ2

s ,yP ) � 2Q
(
τm /

√
σ2
m(ε, σ2

s ,yP )
)

(37)

whereas, when H0 holds, the above probability reduces to

βlq
0,m � 2Q(τm/

√
σ2
n,m).

As a result, the FC receives an error-prone rlq
m frommth sensor

node (m = 1, . . . ,M), which is given by:

rlq
m =

{
zlq
m, with probability 1− Pe,m

1− zlq
m, with probability Pe,m

(38)

wherePe,m represents the (known) BEP of the channel. Accord-
ingly, zlq

m is sent over a BSC and the FC receives rlq
m based on

(38) and forms rlq � [rlq
1 , r

lq
2 , . . . , r

lq
M ]T .

Given these above assumptions, the probability that
rlq
m = 1 under H1 is given by αlq

m(ε, σ2
s ,yP ) = (1−

Pe,m)βlq
m(ε, σ2

s ,yP ) + Pe,m(1− βlq
m(ε, σ2

s ,yP )) whereas
under H0 it holds αlq

0,m = (1− Pe,m)βlq
0,m + Pe,m(1− βlq

0,m).
For the considered LQ model, attempting to devise the DLMP

for the cases S1-S3 introduced in Section II-C leads to the same
fusion rule, as shown by the following proposition.

Proposition 2: The one-bit DLMP fusion statistic based on
LQ is coincident under the three different scenarios considered
and equal to:

Λlq
1B−DLMP =

sup
yP

∑M
m=1(r

lq
m − αlq

0,m) Ξlq
m d2 (yP ,ym)√∑M

m=1 α
lq
0,m

[
1− αlq

0,m

] (
Ξlq
m

)2

d4 (yP ,ym)

, (39)

where the auxiliary definition

Ξlq
m � (1− 2Pe,m)

αlq
0,m

[
1− αlq

0,m

] τm
σ3
n,m

pN

⎛⎝ τm√
σ2
n,m

⎞⎠ ‖hm‖2 (40)

has been employed.

Proof: The proof follows along the same lines as the RQ case
and it is thus omitted for brevity. �

Remarks: The results in Propositions 1 and 2 prove the coinci-
dence of DLMP rule in S1-S3, for both RQ and LQ. Accordingly,
a unique DLMP rule will be considered in each quantization
case in what follows. Also, it is worth noticing that the DLMP
expressions in RQ and LQ cases retain an analogous functional
dependence (see (33) and (39)), except for different expressions
of the bit probability under H0.

The only remaining issue is how to select the quantization
thresholds for RQ (collected as η �

[
η1 · · · ηM

]T
) and LQ

(collected as τ �
[
τ1 · · · τM

]T
) cases in a way to optimize

DLMP performance. The aforementioned design is provided in
next subsection.

C. Comparison With One-Bit GLR Counterparts

Similarly to the raw case, the one-bit DLMP-based rules re-
ported in (33) and (39) can be implemented by performing a grid
search w.r.t. yP over the (limited) ROI A ∈ Rd. Accordingly,
by denoting with Λ1B−DLMP the generic one-bit DLMP statistic,
we can approximate it (by discretization) as follows:

Λ1B−DLMP(r) ≈ max
j=1,2,...,CP

ΛLMP (r ,yP [j]) . (41)

Accordingly, the complexity DLMP-based fusion rules is
O(M CP ). This implies the same complexity reduction with
respect to corresponding one-bit GLR-based counterparts. In-
deed, the GLR statistic based on either RQ or LQ has an
analogous expression as the raw measurement case, i.e. when
replacing the pdfp(x;κ,yP )with either (the pmf)P (rrq;κ,yP )
or P (rlq;κ,yP ). For example, in the RQ case the GLR can be
written as:

Λrq
1B−GLR(r

rq) � arg max
(κ,yP )

{
M∑

m=1

rrq
m ln

(
αrq
m(κ,yP )

αrq
0,m

)

+(1− rrq
m) ln

(
1− αrq

m(κ,yP )

1− αrq
0,m

)}
(42)

A similar expression holds forΛlq
1B−GLR(r

lq), when replacing the
bit probabilityαrq

m(κ,yP )withαlq
m(κ,yP ). We observe that also

in the quantized scenario ΛGLR the ML estimate pair (κ̂, ŷP )
cannot be obtained in closed form. Hence, the same (joint)
grid approach on (κ,yP ) leads to the complexity O(M CP Cκ),
where Cκ denotes the number of grid points associated to κ.

D. Design of the Local Quantizers Based on the Asymptotic
Performance Analysis

In this section the local quantization thresholds at the sen-
sors are obtained based on the semi-asymptotic analysis of the
DLMP rule. Indeed, no closed-form (theoretical) expressions
for detection and false-alarm probabilities exist for the DLMP
test (i.e. when nuisance unobservable under H0 are present). A
similar reasoning applies to the performance of the GLR rule in
the same setup.
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The asymptotic distribution of Λ1B−DLMP(yP ), i.e. assuming
yP known, for large M is as follows [50]:

Λ1B−DLMP (yP )
a∼
{
N (0, 1), under H0

N (μ (yP ) , 1) , under H1

, (43)

where the deflection measure μ(yP ) = ε
√I(ε = 0;σ2

s ,yP ) =

σ2
s

√I(σ2
s = 0; ε,yP ) = κ

√I(κ = 0;yP ), as the DLMP co-
incides in the three scenarios considered. The probabilities of
detection and false alarm at the FC, using (43), can be thus
expressed as follows:

PD = Q (γfc − μ(yP )) PF = Q (γfc) , (44)

where the FC threshold can be set as γfc = Q−1(P̄F) when a
desired false-alarm rate P̄F is given. It can be observed from
(44) that increasingμ(yP ) leads to an enlarged distance between
hypotheses H0 and H1, when the POI to be detected is located
at yP , i.e. for the (one-bit) position-clairvoyant LMP rule.

It can be shown that in RQ and LQ cases, respectively, the
deflection equals

μrq(yP ) =
κ

2

√√√√ M∑
m=1

(Ξrq
m)2 αrq

0,m(1− αrq
0,m) d4 (yP ,ym)

(45)

and

μlq(yP ) = κ

√√√√ M∑
m=1

(Ξlq
m)2 αlq

0,m(1− αlq
0,m) d4 (yP ,ym)

(46)

Additionally, the deflection under LQ is twice that under RQ.
This is consistent with previous studies comparing RQ and LQ
in similar (however simplified) setups.

For this reason, we aim to design the threshold vectors η and
τ that maximize μrq(yP ) and μlq(yP ), respectively, as follows:

η
 = argmax
η

μrq(yP ,η) (47)

τ 
 = argmax
τ

μlq(yP , τ ) (48)

Even if we could potentially obtain (impractical) solutions η


and τ 
 depending on yP , for this particular problem the opti-
mization admits an appealing solution, as summarized by the
following theorem.

Theorem 1: For RQ case, the objective to be optimized for
each m is Ψrq

m � {(Ξrq
m)2 αrq

0,m(1− αrq
0,m)}, where:

Ψrq
m (ηm) =

(1− 2Pe,m)2

αrq
0,m

[
1− αrq

0,m

] η2m
σ6
n,m

p2N

⎛⎝ ηm√
σ2
n,m

⎞⎠ (49)

Similarly, for LQ case, the mth objective is Ψlq
m �

{(Ξlq
m)2 αlq

0,m(1− αlq
0,m)}, where:

Ψlq
m (τm) =

(1− 2Pe,m)2

αlq
0,m

[
1− αlq

0,m

] τ2m
σ6
n,m

p2N

⎛⎝ τm√
σ2
n,m

⎞⎠ (50)

Fig. 2. (a)Ψrq
m versus ηm and (b)ωrq

m versusβrq
0,m forσ2

n,m = 1 andPe,m ∈
{0.05, 0.1, 0.2}. The optimal quantization thresholds depend on Pe,m value.

Proof: The proof can be readily obtained from (45) and (46)
by observing that both κ and d4(yP ,ym) are positive terms and
are independent on the thresholds. Hence, each positive term
(Ξrq

m)2 αrq
0,m(1− αrq

0,m) (resp. (Ξlq
m)2 αlq

0,m(1− αlq
0,m)) should

be maximized (separately) w.r.t. the corresponding threshold ηm
(resp. τm). �

Remarks: first of all, the aforementioned theorem highlights
that the M -dimensional design of the quantizers for the whole
WSN simplifies into M decoupled threshold designs, whose
solutions are also independent of yP . Hence, the optimization
complexity scales linearly with the number of sensors M . By
comparing the two objectives, it can be observed that they
have a similar functional dependence. Additionally, for RQ the
threshold ηm varies over the whole R and Ψrq

m(ηm) is an even
function. Differently, for LQ the threshold τm has a meaningful
range of variation only over R+ (cf. (36)).

Such maximizations can be re-formulated in terms of the local
sensing bit-probabilities (under H0) βrq

0,m and βlq
0,m, being in

bijective correspondence with ηm and τm, respectively, as

ωrq
m

(
βrq
0,m

)
=

p2N
(Q−1(βrq

0,m)
) [Q−1(βrq

0,m)
]2

Δm + βrq
0,m

[
1− βrq

0,m

] (51)

and

ωlq
m

(
βlq
0,m

)
=

p2N
(
Q−1(βlq

0,m / 2)
) [

Q−1(βlq
0,m / 2)

]2
Δm + βlq

0,m

[
1− βlq

0,m

] (52)

where Δm � [Pe,m(1− Pe,m)]/(1− 2Pe,m)2. Since Ψrq
m(ηm)

and Ψlq
m(τm) (resp. ωrq

m(βrq
0,m) and ωlq

m(βlq
0,m)) are non-concave,

we can utilize numerical optimization routines to tackle this
maximization.

In what follows, without loss of generality, we focus on the
objective in (49) for the RQ case. Indeed, the objective for the LQ
case ((50)) can be solved in a similar fashion. Accordingly, Fig. 2
depictsΨrq

m versus ηm forPe,m ∈ {0.05, 0.1, 0.2} and unit noise
variance (σ2

n,m = 1). For completeness, also the re-parametrized
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Fig. 3. Optimized threshold values η�m via (49) and (53) for different values
of Pe,m.

TABLE III
OPTIMIZED THRESHOLD VALUES VIA (49) AND (53) FOR DIFFERENT VALUES

OF Pe,m

objectiveωrq
m versus βrq

0,m is reported. As shown in the figure, the
optimum quantization threshold at each sensor clearly depends
on the corresponding BEP valuePe,m experienced. Also,Ψrq

m(·)
is an even function due to the peculiar symmetry arising from
RQ. Accordingly, we can restrict our search for the optimum
threshold at R+, as there will be always a pair of solutions
η
m = −η
m attaining the same objective value. The same obser-
vation can be drawn from inspection of ωrq

m(·), with a symmetry
around the chance probability βrq

0,m = 0.5.
By using standard curve fitting, we obtain an (approximated)

equation relating the BEP and the thresholds η
m calculated
optimizing the objective in (49):

η
m√
σ2
n,m

=
1

−1.6233P 2
e,m + 1.2574Pe,m + 0.7443

. (53)

Fig. 3 compares the values of the thresholds obtained by optimiz-
ing the original objective in (49) with those calculated using (53).
It is apparent that there are only slight differences between these
curves. For a quantitative comparison, some relevant values from
Fig. 3 are reported in Table III.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we evaluate the performance of the proposed
fusion rules in terms of detection (PD) and false alarm proba-
bilities (PF), obtained via 105 Monte Carlo runs.

In the simulation setup, we assume a 2-D region,A = [0, 1]×
[0, 1], as the area to be monitored. A WSN is responsible for

Fig. 4. ROC curves of the proposed detectors, where M = 100, σ2
s = 20,

ε ∈ {0.03, 0.05}, Pe,m = 0.

detecting the presence of a POI whose position yP ∈ A. We
assume that the sensors are arranged to uniformly cover A
in a grid fashion. Additionally, we assume that the length of
sparse signal equals K = 200 and σ2

n,m = 1 for all sensors
m = 1, . . . ,M . The elements of {hm,m = 1, . . . ,M} of the
compression vector are drawn from i.i.d. standard normal dis-
tributions and then normalized to satisfy ‖hm‖2 = 1, ∀m. For
completeness, in what follows, we consider both PL (cf. (2))
and EL (cf. (3)) models, with parameters α = 4 and β = 0.2
[23]. The (equivalent) signal-to-noise ratio (SNR) is given by
SNR � (ε σ2

s)/σ
2
n,m = κ /σ2

n,m [28].
Based on Sections III-D and IV-C, the implementation of

GLR and DLMP rules relies on grid search. Specifically, the
search space of κ (for GLR only) is assumed to be Sκ � [0, κ̄],
where κ̄ is such that the SNR = 20 dB. The vector collecting the
points on the grid is then defined as [0, gκ], where gκ collects
values corresponding to the SNR values -10:2.5:20 (dB). As a
result, the number of bins equals Cκ = 13. Second, the search
support of yP coincides with the monitored area, i.e. SyP

= A.
Accordingly, the 2-D grid is the result of sampling A uniformly
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Fig. 5. ROC curves of the proposed detectors, where M = 100, SNR = 2dB,
ε = 0.02, Pe,m ∈ {0.1, 0.2}.

withCP = N2
c , whereNc = 50. Based on the above choices, the

evaluation of DLMP requires 2.5× 103 grid points, as opposed
to 3.25× 104 points for GLR. This leads to a (more than)
ten-fold complexity reduction of DLMP with respect to a GLR
based on the same quantization strategy (or full-precision data
x).

Figs. 4(a) and 4(b) show the receiver operating characteristic
(ROC) curves of the proposed detectors, where M = 100, σ2

s =
20, ε ∈ {0.03, 0.05} and Pe,m = 0 for PL and EL models, re-
spectively. Accordingly, the equivalent SNR for ε = 0.03 (resp.
ε = 0.05) corresponds to SNR ≈ −2dB (resp. SNR ≈ 0dB).
The POI position yP is randomly drawn according to a uniform
pdf within A. First of all, it is observed that the performance
of the detectors improves by increasing the sparsity degree ε.
Additionally, LQ proves to performs better than RQ due to the
exploitation of the local LR at each sensor for both GLR and
DLMP cases. Finally, GLR detectors perform slightly better than
DLMP detectors in all cases.

Then in Figs. 5(a) and 5(b), we evaluate the performance of
single-bit-quantized detectors via ROC under non-ideal BSC

Fig. 6. Probability of detection (PD) at the FC vs. number of sensors M
(subject to PF = 0.05), where SNR = 2 dB, ε = 0.02, Pe,m ∈ {0, 0.1}; PL
model.

Fig. 7. Probability of detection (PD) at the FC versus SNR (subject to
PF = 0.05), where M = 100, ε = 0.02, Pe,m ∈ {0, 0.1}; PL model.

with Pe,m ∈ {0.1, 0.2}, for PL and EL models, respectively.
We consider a WSN with M = 100 sensors, SNR = 2 dB and
ε = 0.02. As shown in these figures, the performance of the
detectors under the BSC degrades significantly by increasing the
error probability of the channel. This applies to both quantization
types and both detectors (GLR and DLMP) considered. Finally,
the performance under EL model is generally lower than that
under PL model, due to more rapid attenuation represented by
the peculiar AAF.

We then investigate the performance trend of WSNs when
increasing the number of sensors. Accordingly, Fig. 6 depicts the
FC detection probability PD vs. M , where the false-alarm rate
is set to PF = 0.05. In this scenario, we consider SNR = 2 dB,
ε = 0.02 and Pe,m ∈ {0, 0.1}. Also, without loss of generality
in what follows we focus on the PL attenuation model. It is
seen that the performance of the all detectors clearly improve
by increasing the number of sensors. This applies to all the
considered quantization schemes and channel conditions. Still,
a lower probability of error of the BSC results in a sharper trend
toward ideal performance. From comparison of LQ and RQ, it
is apparent that the former guarantees higher performance over
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Fig. 8. PD heatmaps vs. POI position yP (subject to PF = 0.05) for (a) ΛDLMP, (b) Λlq
1B−DLMP, (c) Λrq

1B−DLMP, (d) ΛGLR, (e) Λlq
1B−GLR and (f) Λrq

1B−GLR,
where M = 100, SNR = 2 dB, ε = 0.02, Pe,m = 0; PL model.

the whole considered range of WSN size. Finally, by comparing
GLR and DMLP detectors, the performance loss of the latter is
more significant in the RQ case, while less relevant in the (better)
case of LQ.

Furthermore, we provide a complementary view of the per-
formance w.r.t. a relevant sensing parameter of the POI. Ac-
cordingly, Fig. 7 shows the PD versus the SNR for the proposed
detectors when PF = 0.05. We recall that the SNR considered
jointly takes into account both the sparsity and the signal SNR
via the parameter κ. As can be observed, by increasing the
SNR, the performance of the detector improves. In addition,
the quality of the BSC greatly affects the performance of the
proposed detectors.

Finally, in Fig. 8 we investigate the effect of POI location
yP on the probability of detection PD of the proposed detectors
(subject to PF = 0.05) based on full-precision/quantized data.
Their perfomance is investigated by varying the positionyP over
the whole ROI A. The WSN sensing parameters considered are
ε = 0.02 and SNR = 2 dB. Furthermore, the size of the WSN is
M = 100, whereas the BSCs are assumed to be ideal (Pe,m = 0)
for simplicity. By looking at the results, there is an obvious
performance gap between the GLR/DLMP detectors (which use
full-precision observations) and 1-bit quantized detectors (either
RQ- or LQ-based) over the whole ROI. Still, fusion rules based
on LQ provide an overall improved detection rate. Moreover, by
looking at the qualitative profile of all the heatmaps in Fig. 8,
the performance of the proposed detectors degrades only at the
edges of the ROI. This is the effect of the regular (grid-like)
WSN placement within the ROI.

VI. CONCLUSION

In this paper, we considered DD of a localized POI via a
WSN. Each sensor measures the POI absence/presence mod-
eled as a sparse stochastic signal whose (average) signal loss
depends on the POI-sensor distance. CS-based (resp. CS-based
plus quantized) observations of sensors are sent to the FC via
(error-prone) reporting channels where the final decision is made
about the absence/presence of the POI. Because of the nuisance
parameter, the LMP is not applicable and therefore the DLMP
statistic was adopted to derive efficient fusion rules. It was shown
that the DLMP rule coincides for the three considered tests of
hypotheses. This applies to both full-precision and quantized
communication scenarios.

Focusing on the (more realistic) quantized communication
scenario, the WSN performance was further optimized by
designing the sensors’ quantizers. This objective was accom-
plished by resorting to the asymptotic performance of position-
clairvoyant LMP rule associated to either to RQ or LQ. It was
shown that (for both quantization types) the proposed design
leads to a sensor-decoupled optimization, which is independent
on the POI parameters {ε, σ2

s ,yP } and can be solved offline via
a simple 1-D line search, see e.g. (49)–(50). Still, it was observed
that each quantization threshold depends on the BEP value Pe,m

of the reporting channel associated to that sensor. Simulation
results highlighted only a moderate loss of DLMP-based rules
w.r.t. GLR-based rules (while being significantly less complex).
This result is more evident in the analog case and when LQ is
applied, with the loss more pronounced when RQ is adopted.
Also, it was shown that both rules are able to capitalize (a) a
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larger WSN and (b) stronger (and/or less sparse) emitted signal
by the POI, even in the case of one-bit quantization. Still, the
performance is rapidly degraded when the reporting channel
deviates from (near-)ideality.

Future directions of research will include (a) design of multi-
bit DLMP detectors for the considered sparse model, (b) consid-
ering the presence of non-Gaussian noise/interference [29], (c)
taking into account dependent observations [35] (d) adoption of
censoring sensors [52] (to further improve energy-efficiency)
and (e) local & global rule design for sparsely-connected
WSN architectures, such as tree-structured sensor networks [46]
and (f ) taking into account advanced reporting channels and
explicitly considering them in the design stage (e.g. a “decode-
and-fuse” approach [53]).

APPENDIX A
PROOF OF PROPOSITION 1 (EQUIVALENCE OF DLMP RULES

FOR RAW QUANTIZATION IN SCENARIOS S1–S3)

To prove the equivalence in scenarios S1–S3, we start from
the implicit forms of the corresponding DLMP detectors based
on the 1-bit (error-prone) raw-quantized observations rrq �
[rrq

1 , r
rq
2 , . . . , r

rq
M ]T . Accordingly, their expression is:

Λrq
1B−DLMP(1) � sup

(σ2
s ,yP )

(
∂ lnP(rrq; ε,σ2

s ,yP )
∂ε

) ∣∣∣∣∣
ε=0√

I rq
1B (ε = 0;σ2

s ,yP )
(54)

Λrq
1B−DLMP(2) � sup

(ε,yP )

(
∂ lnP(rrq;ε,σ2

s ,yP )
∂σ2

s

) ∣∣∣∣∣
σ2
s=0√

I rq
1B (σ2

s = 0; ε,yP )
(55)

Λrq
1B−DLMP(3) � sup

yP

(
∂ lnP (rrq;κ,yP )

∂κ

) ∣∣∣∣∣
κ=0√

I rq
1B (κ = 0;yP )

(56)

where I rq
1B(ε = 0;σ2

s ,yP ), I rq
1B(σ

2
s = 0; ε,yP ) and I rq

1B(κ =
0;yP ) are the relevant Fisher information terms associated to
rrq, whose definitions are analogous to those in (15), (20), and
(24) for the full-precision case (and thus not reported for brevity).

In order to obtain Λrq
1B−DLMP explicitly, we expand

lnP (rrq; ε, σ2
s ,yP ) = lnP (rrq;κ,yP ) considering the inde-

pendence of rrq = [rrq
1 , r

rq
2 , . . . , r

rq
M ]T as follows:

lnP
(
rrq; ε, σ2

s ,yP

)
=

M∑
m=1

ln
[
P

(
rrq
m; ε, σ2

s ,yP

)]
=

M∑
m=1

rrq
m ln

[
αrq
m(ε, σ2

s ,yP )
]

+ (1− rrq
m) ln

[
1− αrq

m(ε, σ2
s ,yP )

]
(57)

Taking the derivative of lnP (rrq; ε, σ2
s ,yP ) w.r.t. one of the

three parameters ε, σ2
s or κ, generically denoted with a here-

inafter, and setting it to zero, leads to the following compact

result:

∂ lnP
(
rrq; ε , σ2

s yP

)
∂a

∣∣∣∣∣
a=0

=

M∑
m=1

∂αrq
m(ε, σ2

s ,yP )

∂a

∣∣∣∣
a=0

(rrq
m − αrq

0,m)

αrq
0,m (1− αrq

0,m)
(58)

By means of a similar reasoning, the Fisher information terms
for S1-S3 are readily obtained as:

I rq
1B

(
ε = 0;σ2

s ,yP

)
=

M∑
m=1

(
∂αrq

m(ε,σ2
s ,yP )

∂ε

)2
∣∣∣∣
ε=0

αrq
0,m (1− αrq

0,m)
. (59)

I rq
1B

(
σ2
s = 0; ε,yP

)
=

M∑
m=1

(
∂αrq

m(ε,σ2
s ,yP )

∂σ2
s

)2
∣∣∣∣
σ2
s=0

αrq
0,m (1− αrq

0,m)
. (60)

I rq
1B (κ = 0;yP ) =

M∑
m=1

(
∂αrq

m(ε,σ2
s ,yP )

∂κ

)2
∣∣∣∣
κ=0

αrq
0,m (1− αrq

0,m)
. (61)

By noticing that:

∂αrq
m(ε, σ2

s ,yP )

∂ε

∣∣∣∣
ε=0

=
σ2
s

2
Ξrq
m αrq

0,m (1− αrq
0,m) d2(yP ,ym)

(62)

∂αrq
m(ε, σ2

s ,yP )

∂σ2
s

∣∣∣∣
σ2
s=0

=
ε

2
Ξrq
m αrq

0,m (1− αrq
0,m) d2(yP ,ym)

(63)

∂αrq
m(ε, σ2

s ,yP )

∂κ

∣∣∣∣
κ=0

=
1

2
Ξrq
m αrq

0,m(1− αrq
0,m) d2(yP ,ym)

(64)

Substituting (62)–(64) into both (58) and (59)–(61) allows the
evaluation of the DLMP rules in (54)–(56), thus providing the co-
incidence expression reported in Proposition 1. This concludes
the proof.
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